

Professur Psychologie digitaler Lernmedien

Institut für Medienforschung Philosophische Fakultät

Überblick

- Einführung
- MANOVA
- MANCOVA

Einführung (z.B. Rasch, Friese, Hofmann & Naumann, 2021; Rey, 2020)

- Varianzanalyse (engl. analysis of variance, ANOVA): Statistisches Verfahren zum simultanen Vergleich mehrerer Mittelwerte
- Einfaktorielle vs. mehrfaktorielle Varianzanalyse
 - Einfaktorielle Varianzanalyse: Varianzanalyse zu einem einfaktoriellen Versuchsdesign
 - Mehrfaktorielle Varianzanalyse: Varianzanalyse zu einem mehrfaktoriellen Versuchsdesign
- Univariate vs. multivariate Varianzanalyse
 - Univariate Varianzanalyse: Varianzanalyse mit einer abhängigen Variable
 - Multivariate Varianzanalyse: Varianzanalyse mit mehreren abhängigen Variablen

Multivariate Varianzanalyse (z. B. Bortz & Schuster, 2010; Pituch & Stevens, 2015)

- Multivariate Varianzanalyse (engl. multivariate analysis of variance, MANOVA): Varianzanalyse für mehrere abhängige Variablen, bei denen die Mittelwertunterschiede gleichzeitig geprüft werden
- Beispiel: Lernexperiment mit Behaltens- und Transferlernleistungen, kognitiver Belastung und Lernspaß als abhängige Variablen
- Vorteile multivariater Varianzanalysen
 - Differenziertere Erfassung eines Konzeptes
 - Berücksichtigung der Korrelationen zwischen den AVs
 - Vermeidung der Alphafehler-Kumulierung
 - Erhöhung der Teststärke
- Nachteil (u. a.): Schwierigere Interpretierbarkeit der Ergebnisse

Multivariate Varianzanalyse: Mehrfache univariate oder eine multivariate Testung? (z. B. Bortz & Schuster, 2010)

Entscheidung je nach Szenario/Untersuchungsziel*:

Mehrfach univariat (mehrere ANOVA)	Einfach multivariat (eine MANOVA)
Untersuchung dient nicht der Überprüfung von Hypothesen, sondern der (oft vorgelagerten) Exploration der wechselseitigen Beziehungen der AV untereinander und ihrer Bedeutung für Gruppenunterschiede	Beantwortung der Frage, ob sich die Stichproben insgesamt, also in Bezug auf alle abhängigen Variablen unterscheiden (AV sind korreliert und stellen in ihrer Kombination ein komplexes Merkmal dar)
AV sind (zumindest theoretisch) unabhängig voneinander (unkorreliert)	relative Bedeutung der abhängigen Variablen für die Unterscheidung der Stichproben soll ermittelt werden
Ergebnisse der Untersuchung sollen mit vorliegenden univariaten Ergebnissen verglichen werden	eine Teilmenge an Variablen gesucht wird, die am meisten zur Unterscheidung der Stichproben beitragen
Interesse an Parallelstichproben → Nachweis der Äquivalenz der untersuchten Stichproben bezüglich möglichst vieler Variablen	ein den am besten trennenden Variablen gemeinsam zugrundeliegendes Konstrukt wird gesucht

*adaptiert nach Bortz & Schuster, 2010, S. 472

Multivariate Varianzanalyse: Mehrfache univariate oder eine multivariate Testung?

- Beispiele zur Verdeutlichung:
- Häufige Messung in experimentellen Studien/Abschlussarbeiten mit Gruppenvergleich und den AVs: Behalten und Transfer
 - MANOVA korrekt, da beide AV miteinander korreliert und ihre Kombination stellt ein sinnvolles Konstrukt dar (man könnte es z. B. "Lernerfolg" nennen)
 - MANOVA kontrolliert f
 ür die Korrelation zwischen den AV
- Messung der Big Five als AV (z. B. Medienwirkungsforschung)
 - MANOVA wäre hier falsch, da die Dimensionen orthogonal zueinander oder zumindest hochgradig diskriminant voneinander sind (kaum bis nicht korreliert, kein sinnvolles Gesamtkonstrukt)
 - Hier würden sinnvollerweise fünf einzelne ANOVA mit entsprechender Alpha-Fehler-Kontrolle gerechnet werden (z. B. mit Bonferroni-Korrektur)

Multivariate Varianzanalyse: Mehrfache univariate oder eine multivariate Testung?

- Erfahrung zeigt, dass häufig die falschen Verfahren verwendet werden (univariate Testung statt multivariat und umgekehrt) (z. B. Bortz & Schuster, 2010, S. 471)
- Wichtig: theoretisch-inhaltliche Erwägungen und Forschungsziele bei Auswahl des Verfahrens berücksichtigen
- Bei signifikanten Ergebnissen der multivariaten Testung (MANOVA) ist als sinnvolle Follow-Up-Methode die "Diskriminanzanalyse" anzuwenden (siehe unten)
- Hinweis: In Forschungspraxis kann es auch passieren, dass als Follow-Up-Analysen zur MANOVA die univariaten Analysen inklusive Post-hoc-Tests gefordert werden → Kann kritisch hinterfragt werden

Multivariate Varianzanalyse (Pituch & Stevens, 2015)

- Multivariate Prüfstatistiken
 - Pillai-Bartlett's V
 - Wilk's Lambda
 - Hotelling-Lawley's trace
 - Roy's largest root
- Resultierende F- und p-Werte aus diesen verschiedenen Prüfstatistiken in der Regel identisch
- Inferenzstatistische Entscheidung daher meist unabhängig von der gewählten Prüfstatistik
- Wilk's Lambda häufig in Fachzeitschriften berichtet

Multivariate Varianzanalyse (Pituch & Stevens, 2015)

Praktische Hinweise: Welche Prüfstatistik soll ich verwenden?

- Pillai's Trace ist am robustesten. Wenn man nicht genau weiß, ob die Voraussetzungen erfüllt sind (was oft der Fall ist), sollte man diese Statistik wählen → robust und die beste Standardempfehlung, um Fehlinterpretationen zu vermeiden
- Wilks' Lambda trotz ihrer häufigen Verwendung in Publikationen sollte man sie nur verwenden, wenn man eindeutig belegen kann, dass die Daten normalverteilt sind und die Kovarianzmatrizen homogen sind → bei Verstoß gegen diese Voraussetzungen ggf. starke Verfälschung
- Hotelling's Trace ist speziell für den 2-Gruppen-Fall gedacht. Bei gleichen Stichprobengrößen robust und große statistische Power
- Roy's Largest Root ist die Ausnahme und in der Praxis selten sinnvoll zu verwenden, da die Annahmen dafür meist nicht perfekt erfüllt sind, ABER: Bei Erfüllung der Voraussetzungen potenziell größte statistische Power.

Inferenzstatistische Voraussetzungen der MANOVA ohne Messwiederholung

- Intervallskalenniveau der AVs
- Unabhängigkeit der Fehlerkomponenten von den Treatment-Effekten: Beispielsweise bei Messwiederholungen verletzt
- Multivariate Normalverteilung der AVs in der Population für die einzelnen Bedingungskombinationen
 - Univariate Normalverteilungen garantieren <u>keine</u> multivariate Normalverteilung
 - Graphische Inspektion oder (indirekte) Testung, z. B. mittels Test zur Schiefe und Exzess von Mardia (1970)
- Homoskedastizität als Homogenität der Varianz-Kovarianz-Matrizen der einzelnen Faktorstufenkombinationen: Überprüfung durch Box-M-Test oder Bartlett's χ²-Test

Inferenzstatistische Voraussetzungen der MANOVA mit Messwiederholung

- Varianzhomogenität unter den einzelnen Faktorstufen und Homogenität der Korrelationen zwischen den Faktorstufen
 - Auch hier nur Prüfung der Zirkularitätsannahme mittels Sphärizitätstest (Mauchly-Test)
 - Korrekturverfahren bei Verletzungen der Zirkularitätsannahme berichtigen die Freiheitsgrade, so dass das Ergebnis weniger schnell signifikant wird
- Ähnliche Annahmevoraussetzungen ansonsten bei der MANOVA mit MW wie bei der MANOVA ohne MW
- Ausnahme: Unabhängigkeit der Fehlerkomponenten von den Treatment-Effekten muss nicht vorliegen

Inferenzstatistische Voraussetzungen der MANOVA

- Überprüfung der Voraussetzungen in der Forschungspraxis (leider) eher unüblich (vgl. t-Tests)
- Robustheit: Bezüglich der Annahme der multivariaten Normalverteilung unterschiedliche Angaben in der Literatur bezüglich der Robustheit
 - Test robust bei großen und gleichverteilten Stichproben (z. B. Ito, 1969; Ito & Schull, 1964; Stevens, 1979)
 - Test nicht robust (vgl. z. B. Wilcox, 2003)
- Bei Verletzungen der Voraussetzungen kann u. a. ein nonparametrisches Verfahren eingesetzt werden
- In der Praxis: Selten Nutzung nonparametrischer Verfahren

Berechnungen der relevanten Werte (z. B. Field, 2018)

- Generelle Idee wie gehabt: Varianzzerlegung der Gesamtstreuung in einen systematischen Anteil (durch das Modell/die Gruppen erklärbar) und einen Fehleranteil (nicht durch das Modell/die Gruppen) erklärbar
- Mehrere AV → es existiert nicht ein Wert für die AV wie bei univariaten Designs, sondern mehrere Werte (einer für jede AV), die berücksichtigt werden müssen
- Mathematische praktikable Lösung: Verwenden von Vektoren (Darstellung mehrerer AV-Ausprägungen gleichzeitig) und Berechnung auf Basis von Matrizen
- Matrizen ermöglichen es, alle einzelnen Varianzen der AV sowie ihre Beziehungen zueinander (Kovarianzen) in einem einzigen mathematischen Objekt zu erfassen und zu verarbeiten

Berechnungen der relevanten Werte (z. B. Field, 2018)

- Relevante Matrizen f
 ür die Berechnungen
 - T (Total Matrix): enthält die gesamte Streuung der Daten im multivariaten Raum (→ Gesamtvarianz)
 - H (Hypothesis Matrix): enthält die Abweichungen, die durch die Gruppenunterschiede erklärt werden (→ systematische Varianz)
 - E (Error Matrix): enthält die Abweichungen, die nicht durch die Gruppenunterschiede erklärt werden (-> unsystematische Varianz)
- In Analogie zur ANOVA ($QS_{Gesamt} = QS_{Modell} + QS_{Fehler}$) erfolgt die Zerlegung bei der MANOVA mit T = H + E
- Ebenfalls in Analogie zur ANOVA suchen wir das Verhältnis von Modell zu Fehler (vgl. Berechnungen von F-Werten) → Komplexe Berechnung erfolgt über Statistikprogramme
- Nur so viel: die Prüfstatistiken sind verschiedene Varianten, das Verhältnis von H zu E zu prüfen (multivariate Nullhypothese)

Signifikanzprüfung der Prüfstatistik (z. B. Field, 2018)

- Keine direkte Prüfung gegen die F-Verteilung, daher Transformation zu einer approximierten F-Statistik
- Resultierende Statistik wird dann mithilfe einer Formel, die die Anzahl der abhängigen Variablen (p), die Anzahl der Gruppen (k) und die Freiheitsgrade der H und E Matrizen berücksichtigt, in eine F-Statistik (F_{approx}) umgewandelt
 - Für Wilks-Lambda und Hotelling Trace gibt es eine genaue Umrechnung in die F-Verteilung
 - Für Pillai's Trace ist die F-Approximation ebenfalls sehr verlässlich und wird standardmäßig verwendet
- Approximierte F-Statistik wird gegen die Standard-F-Verteilung mit den entsprechenden multivariaten Freiheitsgraden verglichen

Multivariate Freiheitsgrade (z. B. Field, 2018)

- Jeweils drei Freiheitsgrade, die sich auf die Anzahl der AV, Anzahl der Gruppen und die Stichprobengröße beziehen
- df₁: Hypothesen-Freiheitsgrad (Between)

$$df_1 = p \cdot (k-1)$$

p: Anzahl der analysierten AV

k: Anzahl der Gruppen in der UV

N: Gesamtstichprobengröße

• df₂: Fehler-Freiheitsgrad (Within)

$$df_2 = N - k$$

df₃: verbleibender Freiheitsgrad (Residual)

$$df_3 = N - k - (p - 1)$$

→ allg. Formelstruktur, variiert leicht je nach verwendeter Prüfstatistik

- MANOVA ist wie die ANOVA ein "Omnibus-Test" → Einzelner Test prüft eine Hypothese für mehrere Parameter gleichzeitig (hier die Linearkombination der AV bezüglich aller UV-Gruppen)
- Beantwortet nicht folgende Fragen:
 - (1) Welche Gruppen (bei >2) unterscheiden sich voneinander?
 - (2) Welche Bedeutung haben die untersuchten AV für die Unterscheidung der verglichenen Gruppen?
- Follow-up-Analysen zur Beantwortung dieser Fragen:
 - (1) Multivariate Gruppenvergleiche (t-Tests mit α -Fehler-Korrektur auf den Linearkombinationen der AV, keine einfachen Post-hoc-Tests!)
 - (2) Diskriminanzanalyse zur Ermittlung der Gewichte/Koeffizienten für die AV, die angesichts ihrer wechselseitigen Beziehungen (Multikollinearität) zu einer maximalen Trennung der untersuchten Gruppen führen

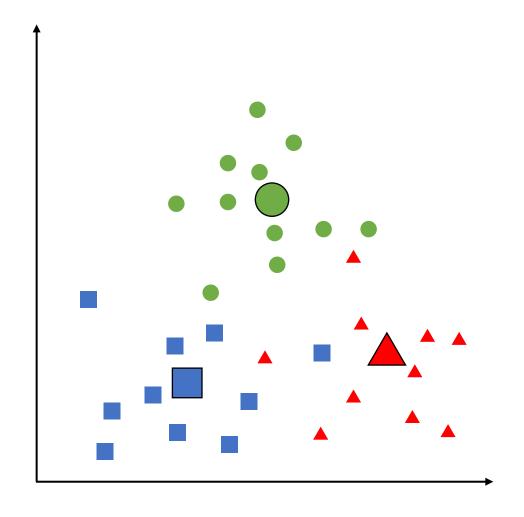
- Wichtige Begriffe zum Verständnis:
- Gruppenmittelpunkte (Gruppenzentroide): multivariater Mittelwert der Fälle, die zu einer Gruppe gehören
- Zwischen-Gruppen-Abstand: Abstand zwischen den Gruppenmittelpunkten der zu trennenden Gruppen
- Inner-Gruppen-Streuung: Maß für den Abstand der einzelnen Fälle zum Gruppenmittelpunkt
- Diskriminanzfunktion: Linearkombination von Merkmalen, die so optimiert ist, dass der Zwischen-Gruppen-Abstand maximiert und die Inner-Gruppen-Streuung minimiert wird
 - Merke: Anzahl der möglichen Diskriminanzfunktionen: Gruppen 1, aber ggf. sind nicht alle davon für die Gruppentrennung wichtig

Visuelle Erklärung

- Beispiel für AV (x- und y-Achse)
- drei Gruppen:

Gruppenzentroide:

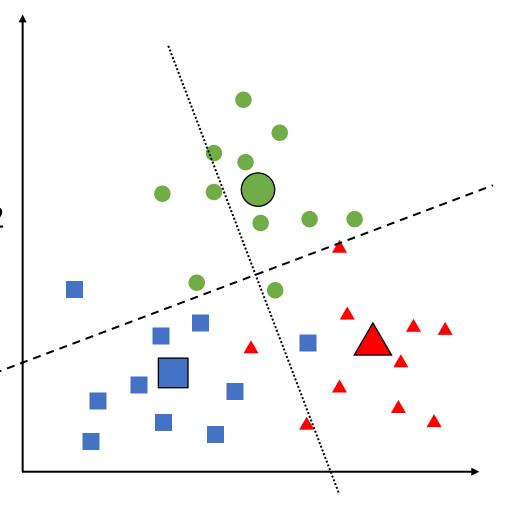
 Welche Funktionen trennen die Gruppen am besten?



Visuelle Erklärung

- mögliche Lösung:
- Diskriminanzfunktion 1 trennt die Gruppen
 - und ▲ von ●
- Diskriminanzfunktion 2 trennt die Gruppen
 - und ▲

bei 3 Gruppen gibt es maximal 2 Funktionen



Statistische Berechnung

- es wird zunächst die erste Diskrimanzfunktion (DF₁) berechnet, welche die vorliegenden Gruppen am besten trennt
- wenn diese Funktion die Gruppen nicht perfekt voneinander trennt, wird eine weitere Diskriminanzfunktion erstellt (orthogonal, also unabhängig von der ersten) und deren Beitrag zur Gruppentrennung (zusätzlich zur DF₁) geprüft (mittels Wilk's Lambda)
- Suche stoppt, wenn keine signifikanter Beitrag zur Gruppentrennung geleistet wird oder wenn die maximale Anzahl an DFs erreicht ist (Anzahl der Gruppen-1)
- Ausgaben der Statistik-Software helfen bei inhaltlicher Interpretation (siehe Übung)

Mathematische Darstellung der Diskriminanzfunktionen

• Grundform: $DF = w_1 \cdot AV_1 + w_2 \cdot AV_2 + \cdots + w_N \cdot AV_N$

DF: Diskriminanz-Score (Wert eines Falls auf dieser neuen Achse)

w_i: Koeffizient (Gewicht) der jeweiligen AV

AV_i: Ausprägung der AV für den jeweiligen Fall

• Bei mehreren Diskriminanzfunktionen $(DF_1, DF_2, ...)$ wird der Koeffizient w mit einem zweiten Index j versehen, der sich auf die Funktionsnummer der Diskriminanzfunktion bezieht:

$$DF_j = w_{j1} \cdot AV_1 + w_{j2} \cdot AV_2 + \dots + w_{jN} \cdot AV_N$$

 Die Koeffizienten unterscheiden sich zwischen den Diskriminanzfunktionen und zeigen jeweils die Wichtigkeit der AV in der jeweiligen Funktion an, nicht generell!

Interpretation der Diskriminanzfunktion: Kanonische Korrelation

• Kanonische Korrelation (R_c) als Maß, wie gut die gefundene DF die Gruppenzugehörigkeit erklärt bzw. vorhersagt

•
$$R_c = \sqrt{\frac{\lambda}{1+\lambda}}$$

 λ : repräsentiert das Verhältnis der Streuung zwischen den Gruppen (H) zur Streuung innerhalb der Gruppen (E) für diese spezifische DF.

- häufiger berichtet wird R_c^2 in Analogie zu R^2 bei Regression:
- R_c^2 gibt den Anteil der Varianz (hier: Gruppenunterschiede) an, der durch die jeweilige Diskriminanzfunktion (DF) erklärt wird.
- Wertebereich: 0 bis 1

zurück zur Frage: Welche Bedeutung haben die untersuchten AV für die Unterscheidung der verglichenen Gruppen?

- (1) relative Bedeutung der einzelnen AV:
 - Erkenntnis: eine bestimmte AV die wichtigste Variable für die Gruppentrennung
 - Begründung: diese AV hat den höchsten standardisierten Koeffizienten (w_{ji}) in der ersten signifikanten Diskriminanzfunktion (DF₁), weil diese Funktion den größten Teil des Gruppenunterschieds erklärt
 - Wichtig: bei Bedarf Überprüfung, welche AV in den signifikanten DFs (DF₁, ggf. DF₂) konsistent die höchsten Koeffizienten aufweist

zurück zur Frage: Welche Bedeutung haben die untersuchten AV für die Unterscheidung der verglichenen Gruppen?

- (2) zugrundeliegende gemeinsame Konstrukte:
 - Erkenntnis: Gruppenunterschiede basieren auf einem gemeinsamen Konstrukt (von ggf. einer Teilmenge der AV)
 - Begründung: mehrere AV (z. B. AV₁, AV₃, AV₄) weisen in einer DF ähnlich hohe Koeffizienten auf. Diese AVs korrelieren und laden gemeinsam auf die Funktion (ein Konstrukt).
 - Beispiel: hohe Koeffizienten für "Arbeitszeit", "Einkommen" und "Markenbewusstsein" in DF₁ lassen das gemeinsame Konstrukt "Materialistischer Lifestyle" vermuten, welches die Gruppen trennt

MANCOVA

- Kovarianzanalyse (engl. analysis of covariance, ANCOVA):
 Varianzanalyse, bei welcher der Einfluss einer (metrischen)
 Drittvariablen (hier: Kovariate) auf die abhängige Variable (AV)
 rechnerisch konstant gehalten, d. h. herausgerechnet (herauspartialisiert) wird
- Multivariate Varianzanalyse (engl. multivariate analysis of variance, MANOVA): Varianzanalyse für mehrere abhängige Variablen, bei denen die Mittelwertsunterschiede gleichzeitig geprüft werden
- Multivariate Kovarianzanalyse (engl. multivariate analysis of covariance, MANCOVA): Kovarianzanalyse für mehrere abhängige Variablen, bei denen die Mittelwertsunterschiede gleichzeitig geprüft werden

MANCOVA

- Beispiel: Lernexperiment mit Behaltens- und Transferlernleistungen, kognitiver Belastung und Lernspaß als abhängige Variablen sowie mit Berücksichtigung des Vorwissens und der Intelligenz der Lernenden als Kovariaten
- Vorteile und Nachteile: Analog zur MANOVA, nur mit zusätzlicher rechnerischer Konstanthaltung der berücksichtigten Kovariaten

Inferenzstatistische Voraussetzungen der MANCOVA

- Gemeinsame inferenzstatistische Voraussetzungen von MANOVA und MANCOVA
 - Intervallskalenniveau der AVs
 - Unabhängigkeit der Fehlerkomponenten von den Treatment-Effekten: Nur für MANOVA/MANCOVA ohne MW
 - Multivariate Normalverteilung der AVs in der Population für die einzelnen Bedingungskombinationen
 - Homoskedastizität als Homogenität der Varianz-Kovarianz-Matrizen der einzelnen Faktorstufenkombinationen
 - Varianzhomogenität unter den einzelnen Faktorstufen und Homogenität der Korrelationen zwischen den Faktorstufen: Nur für MANOVA/MANCOVA mit MW
- Außerdem: Annahme homogener Steigungen der Regressionen innerhalb der Stichproben (siehe Kovarianzanalyse)

Beispiele für MANOVA, Diskriminanzanalyse und MANCOVA in Fachzeitschriften

Furthermore, a MANOVA with task complexity as the independent variable and time, number of moves, GCL, meta-awareness, and intrinsic interest as the dependent variables was conducted. The analysis revealed a strong main effect of task complexity on the dependent variables (F(11,74) = 6.58, p < .001, $\eta^2 = 0.50$).

Quelle: Zeitlhofer, Zumbach und Schweppe (2024)

presents the significance of the canonical discriminant functions. There was a significant canonical correlation (.59) of Function 1 to 3, with an effect size of R_c^2 = 34.81% (Wilks' lambda = .59, χ^2 = 534.28, p < .000). Also, there was a significant canonical correlation (.30) on Function 2 to 3, with an effect size of R_c^2 = 9.0% (Wilks' lambda = .91, χ^2 = 96.94, p < .000). We excluded Function 3 alone from the subsequent analysis because the test of Function 3 alone was not statistically significant (Wilks' lambda = 1.00, χ^2 = .3.49, p = .480, R_c^2 = .36%). To identify the variables that contributed to the group separation, standardized discriminant function coefficients and structure coefficients were examined (see Table 4). For Function 1,

Quelle: Lee et al. (2019)

Hypothesis 1 stated that informative narratives would lead to a higher situational interest than expository texts. We conducted a multivariate analysis of covariance (MANCOVA) with text type as the independent variable, situational interest on the hormones text and the circulatory text as the two dependent variables, and the pre-existing individual interest as covariate. The analysis revealed that, in terms of the multivariate effect, the informative narratives led to a significantly higher situational interest than the expository texts, F(2, 119) = 6.60, p= 0.002, η_p^2 = 0.10 (medium effect). This higher situational interest in informative narratives occurred for both texts to a similar extent (circulatory text: $F(1, 120) = 11.31, p = 0.001, \eta_p^2 = 0.09$ [medium effect], $BF_{10} = 6.78$; hormones text: F(1, 120) = 7.56, p = 0.007, $\eta_p^2 = 0.06$ [medium effect], $BF_{10} = 2.31$). The covariate individual interest was also significantly related to situational interest, F(2, 119) = 32.13, p < 90.001, $\eta_p^2 = 0.35$ (large effect). Therefore, the results supported Hypothesis 1.

Quelle: Golke und Wittwer (2024)

Zusammenfassung

- Varianzanalysen: Statistische Verfahren zum simultanen Vergleich mehrerer Mittelwerte
- Multivariate Varianzanalyse (MANOVA): Varianzanalyse für mehrere abhängige Variablen, bei denen die Mittelwertsunterschiede gleichzeitig geprüft werden
- Multivariate Kovarianzanalyse (MANCOVA): Kovarianzanalyse für mehrere abhängige Variablen, bei denen die Mittelwertsunterschiede gleichzeitig geprüft werden

Prüfungsliteratur

- Bortz, J., & Schuster, C. (2010). Statistik für Human- und Sozialwissenschaftler (7. Aufl.). Berlin: Springer.
 - Multivariate Mittelwertvergleiche (S. 471–486)

Weiterführende Literatur I

- Bortz, J., & Schuster, C. (2010). Statistik für Human- und Sozialwissenschaftler (7. Aufl.). Berlin: Springer.
 - Kovarianzanalyse (S. 305–323)
 - Multivariate Mittelwertvergleiche (S. 471–486)
 - Diskriminanzanalyse (S. 487–506)
- Eid, M., Gollwitzer, M., & Schmitt, M. (2017). Statistik und Forschungsmethoden (5. Aufl.). Weinheim: Beltz.
 - Unterschiede zwischen mehreren Stichproben auf mehrere abhängige Variablen: Multivariate Varianzanalyse (S. 505–526)
 - Gemeinsame Analyse kategorialer und metrischer unabhängiger Variablen (S. 690–704)
- Field, A. (2018). Discovering Statistics Using IBM SPSS Statistics.
 Sage.
 - Multivariate Analysis of Variance (MANOVA) (S. 735–776)

Weiterführende Literatur II

- Leonhart, R. (2022). Lehrbuch Statistik. Einstieg und Vertiefung (5. Auflage). Bern: Huber.
 - Multivariate Varianzanalyse (S. 566–568)
- Sedlmeier, P., & Renkewitz, F. (2018). Forschungsmethoden und Statistik: Ein Lehrbuch für Psychologen und Sozialwissenschaftler (3. Aufl.). München: Pearson.
 - Weitere Varianten der Varianzanalyse (S. 504–508)
- Pituch, K. A., & Stevens, J. P. (2015). *Applied multivariate statistics for the social sciences* (6th ed.). Hove, East Sussex: Routledge.
- Warne, R. T. (2014). A Primer on Multivariate Analysis of Variance (MANOVA) for Behavioral Scientists. *Practical Assessment, Research & Evaluation, 19*(1): 17.